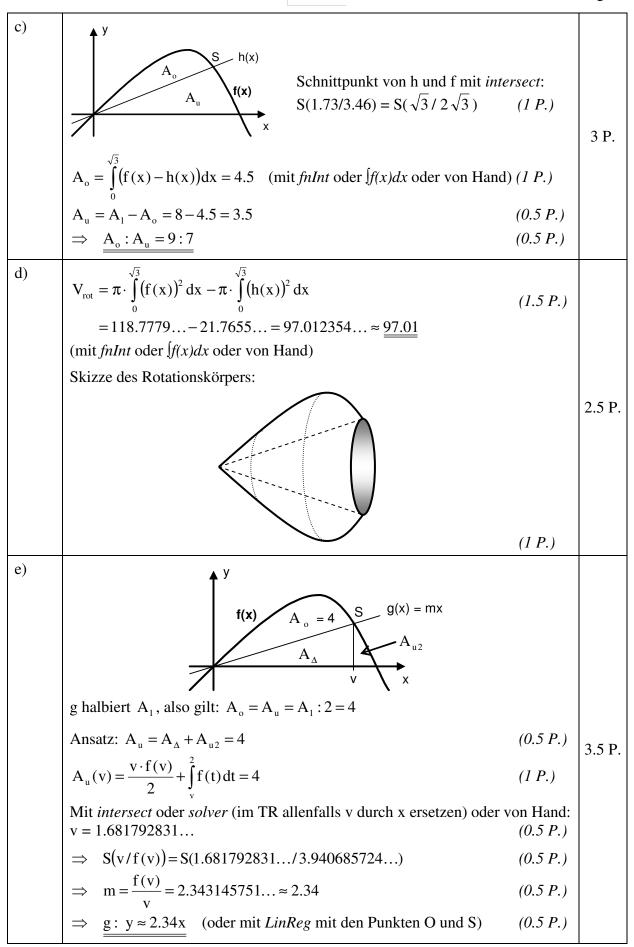
Aufgal	oe 1 Raumgeometrie		15 P.
a)	$k = \overline{CS} = \overline{CS} $ $\overline{CS} = \begin{pmatrix} 0+3 \\ 0-4 \\ 9-2 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 7 \end{pmatrix}$ $\overline{CS} = \sqrt{3^2 + (-4)^2 + 7^2} = \sqrt{74} = 8.602325 \approx 8.60$ $\frac{\text{Variante:}}{\text{Direkt in Distanz formel einsetzen.}}$	(0.5 P.) (1 P.)	1.5 P.
b)	$g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -3-3 \\ 4+4 \\ 10-0 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 8 \\ 10 \end{pmatrix} $ $(z.B.)$ Boden der Pyramide: $z = 2$ $z \text{ in } g: 2 = 0 + 10s \implies s = \frac{1}{5} = 0.2$ $s \text{ in } g \text{ einsetzen:}$ $x = 3 + 0.2 \cdot (-6) = 1.8$	(1 P.) (0.5 P.) (0.5 P.)	3 P.
	$y = -4 + 0.2 \cdot 8 = -2.4$ $\Rightarrow \underline{S(1.8/-2.4/2)}$	(0.5 P.) (0.5 P.)	
c)	$k: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 3 \\ -4 \\ 7 \end{pmatrix} (z.B.)$	(0.5 P.)	
	g und k gleichsetzen: $\begin{vmatrix} 3 & -6s & = -3 + 3t \\ -4 + 8s & = 4 - 4t \\ 0 + 10s & = 2 + 7t \end{vmatrix}$	(0.5 P.)	
	Umformen: I. $ -6s = -6 + 3t$ II. $ 8s = 8 - 4t$ (z.B.) III. $ 10s = 2 + 7t$	(0.5 P.)	4 P.
	Benutze z.B. Gleichungen II. und III. (Beachte: I. und II. sind Vielfache voneinander, weil $g' = k'$ ist.) 7 · II. 56s = 56 - 28t 4 · III. 40s = 8 + 28t \oplus		
	$96s = 64$ $\Rightarrow s = \frac{2}{3}$	(0.5 P.)	

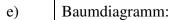
	in III. $t = \frac{10s - 2}{7} = \frac{2}{3}$	(0.5 P.)	
	Kontrolle in I: $3 - 6 \cdot \frac{2}{3} = -1 = -3 + 3 \cdot \frac{2}{3} \implies \text{stimmt!}$	(0.5 P.)	
	s in g: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + \frac{2}{3} \cdot \begin{pmatrix} -6 \\ 8 \\ 10 \end{pmatrix} = \begin{pmatrix} -1 \\ \frac{4}{3} \\ \frac{20}{3} \end{pmatrix}$	(0.5 P.)	
	$\Rightarrow \underline{Q(-1/\frac{4}{3}/\frac{20}{3})}$	(0.5 P.)	
	Variante der Kontrolle: Parameter s in g und t in k einsetzen und überprüfen, ob beide Q iden sind.	itisch	
d)	$\cos \varphi = \frac{\overrightarrow{CS} \cdot \overrightarrow{AB}}{ \overrightarrow{CS} \cdot \overrightarrow{AB} } = \frac{\begin{pmatrix} 3 \\ -4 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} -6 \\ 8 \\ 10 \end{pmatrix}}{\sqrt{74} \cdot \sqrt{(-6)^2 + 8^2 + 10^2}}$ $= \frac{-18 - 32 + 70}{\sqrt{74} \cdot \sqrt{200}} = \frac{20}{\sqrt{14800}} = 0.164398$ $\Rightarrow \varphi = 80.537677 \approx \underline{80.54^\circ}$		2.5 P.
	(Bewertung: Formel / $ \overrightarrow{AB} $ / Skalarprodukt / $\cos \varphi / \varphi$ je 0.5 P.)		
e)	h: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 8 \\ 10 \end{pmatrix}$ (z.B.)		1 P.
f)	$\overline{\text{hg}} = \overline{\text{Sg}}$	(0.5 P.)	
	$\overrightarrow{Sg} = \begin{pmatrix} 3 - 6s - 0 \\ -4 + 8s - 0 \\ 0 + 10s - 9 \end{pmatrix} = \begin{pmatrix} 3 - 6s \\ -4 + 8s \\ -9 + 10s \end{pmatrix}$	(0.5 P.)	
	$\overline{Sg} = \sqrt{(3-6s)^2 + (-4+8s)^2 + (-9+10s)^2}$	(0.5 P.)	
	⇒ minimalisieren mit <i>minimum</i> ⇒ $x = s = 0.7$ ⇒ $y = \overline{Sg} = \overline{hg} = \sqrt{8} = 2.828427 \approx \underline{2.83}$	(0.5 P.) (0.5 P.) (0.5 P.)	3 P.
	Variante mit Skalarprodukt: $\overrightarrow{Sg} \cdot \overrightarrow{AB} = 0 \text{ mit } \overrightarrow{AB} \text{ dem Richtungsvektor von g.}$ Einsetzen: $(3 - 6s) \cdot (-6) + (-4 + 8s) \cdot 8 + (-9 + 10s) \cdot 10 = 0$ Es folgt $s = 0.7$. In Vektor \overrightarrow{Sg} einsetzen und seinen Betrag ausrechnen	n.	

Aufga	be 2 Analysis		17 P.
a)	i) Nullstellen Vermutung aufgrund des Graphen: $x_1 = -2$, $x_2 = 0$, $x_3 = 2$. Überprüfen der Vermutung durch Einsetzen in die Funktionsgleichung: $f(-2) = -2 \cdot (-2)^3 + 8 \cdot (-2) = 16 - 16 = \underline{0}$ $f(0) = -2 \cdot 0^3 + 8 \cdot 0 = 0 + 0 = \underline{0}$ $f(2) = -2 \cdot 2^3 + 8 \cdot 2 = -16 + 16 = \underline{0}$ Variante: $f(x) = 0 \implies -2x^3 + 8x = -2x \cdot (x^2 - 4) = 0$ $\implies \underline{x = 0} \text{oder} (x^2 - 4) = 0$, also $x^2 = 4$, also $\underline{x = \pm 2}$ ii) Tangente t Wendepunkt ist W(0/0). (0) Begründung: Jede Polynomfunktion 3. Grades besitzt genau einen Wendepunkt. Zudem ist f punktsymmetrisch zum Ursprung, da in der	P.)	5 P.
	Oder: $f''(x) = -12x = 0 \implies x = 0 \implies y = 0$. Oder: Extremstelle von $f'(x)$ ist $x = 0 \implies y = 0$. Tangentensteigung: $f'(x) = -6x^2 + 8$ (0 $f'(0) = -6 \cdot 0^2 + 8 = 8$ (oder mit dy/dx) (0 Tangentengleichung: $\underline{t: y = 8x}$ (oder mit $DRAW Tangent$) (0 Zeichnung von t im Koordinatensystem	5 P.) 5 P.) 5 P.) 5 P.)	
b)	$A_{\Delta}(x) = \frac{x \cdot f(x)}{2} = -x^4 + 4x^2 \qquad (1$ $\Rightarrow \text{ maximieren mit } maximum \text{ im}$		3 P.
		P.) P.)	

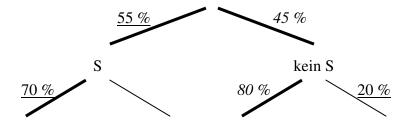


<u>Variante:</u>	
Ansatz: $A_0 = \int_0^v (f(x) - g(x)) dx = \int_0^v (f(x) - mx) dx = 4$.	(0.5 P.)
Mit S(v/f(v)) folgt $m = \frac{f(v)}{v} = \frac{-2v^3 + 8v}{v} = -2v^2 + 8$.	(1 P.)
Einsetzen ergibt: $\int_{0}^{v} (f(x) - (-2v^{2} + 8) \cdot x) dx = 4$	(0.5 P.)
\Rightarrow v = 1.681792831 = $\sqrt[4]{8}$ mit solver oder von Hand	(1 P.)
$\Rightarrow m = 2.343145751$ $\Rightarrow \underline{g: y \approx 2.34x}$	(0.5 P.)

Aufga	be 3 Wahrscheinlichkeitsrechnung	14 P.
a)	4 N, 3 M, 2 H ⇒ 9 Gläser für 9 Tische Permutation (geordnete Stichprobe) mit Wiederholungen: $\frac{9!}{4! \cdot 3! \cdot 2!} = \frac{1260}{2}$	1.5 P.
b)	$P(M) = \frac{3}{9} = \frac{1}{3} = \frac{33.3\%}{2}$ (3 von 9 Gläsern; 1. Tag spielt keine Rolle.)	1.5 P.
c)	$m = \binom{9}{4} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4!} = 126 (4 \text{ von } 9 \text{ Gläsern, ungeordnete Stichprobe})$ $g = \binom{7}{2} = \frac{7 \cdot 6}{2!} = 21 (2 \text{ von } 7 \text{ Nicht-H-Gläsern, 2 H fix, ungeord. Stichpr.})$ $\Rightarrow \frac{g}{m} = \frac{21}{126} = \frac{1}{6} = \frac{16.67\%}{6}$ $\frac{\text{Variante: (nacheinander 4 Gläser ziehen ohne Zurückstellen)}}{120}$ $P(2H + 2 \text{ andere}) = \frac{2}{9} \cdot \frac{1}{8} \cdot \frac{7}{7} \cdot \frac{6}{6} \cdot \underbrace{\frac{4!}{2! \cdot 2!}}_{6 \text{ Pfade}} = \underbrace{\frac{1}{6}}_{6 \text{ Pfade}} = \underbrace{\frac{1}{6} \cdot \frac{6.67\%}{6}}_{6 \text{ pfade}}$	2 P.
d)	$P(S) = P(\text{kein } S) = 0.5$ $P(\text{mind. } 1S) = P(1S) + P(2S) = 0.5 \cdot 0.5 \cdot 2 + 0.5 \cdot 0.5 = \underline{0.75} = \underline{75 \%}.$ $\underline{\text{Variante: (mit Gegenereignis)}}$ $P(\text{mind. } 1S) = 1 - P(\text{kein } S) = 1 - 0.5 \cdot 0.5 = \underline{0.75} = \underline{75 \%}.$	1.5 P.



(Legende: Vorgaben / Folgerungen / in i) gesuchtes Ereignis)



L steigt

L steigt L steigt nicht

L steigt nicht (0.5 P.)

3.5 P.

4 P.

i)
$$P(L \text{ steigt}) = 0.55 \cdot 0.7 + 0.45 \cdot 0.8$$

= $0.385 + 0.36 = 0.745 = 74.5 \%$ (1.5 P.)

P(S wenn L steigt) =
$$\frac{P(S \text{ und L steigt})}{P(L \text{ steigt})}$$

ii) = $\frac{0.385}{0.745} = 0.516778... = \frac{77}{\underline{149}} = \underline{51.68\%}$ (1.5 P.)

f) Ingesamt gibt es $6 \cdot 8 = 48$ mögliche Ereignisse, alle gleich wahrscheinlich.

6 davon sind Unentschieden, also verbleiben 42 mögliche Ereignisse. (1 P.)

Peter gewinnt, wenn ...

... Peter 2, Paul 1,

... Peter 3, Paul 1 oder 2,

... Peter 4, Paul 1, 2 oder 3,

... Peter 5, Paul 1, 2, 3 oder 4,

... Peter 6, Paul 1, 2, 3, 4, oder 5,

... also in
$$1 + 2 + 3 + 4 + 5 = 15$$
 Fällen. (1 P.)

(Paul gewinnt somit in 42 - 15 = 27 Fällen.

Oder: Paul gewinnt auch in diesen 15 Fällen plus je sechs Fälle, wenn er eine 7 oder 8 würfelt: 15 + 12 = 27. Somit total 15 + 27 = 42 Fälle mit einem Sieger.)

Es gilt: P(Peter gewinnt) =
$$\frac{15}{42}$$
 = 0.35714... (1 P.)

Wenn das Spiel fair sein soll, muss er auch den entsprechenden Einsatz leisten:

Einsatz Peter:
$$\frac{15}{42}$$
 · 200 Rp. = $\underline{71 \text{ Rp.}}$

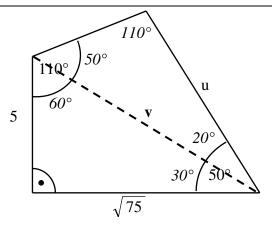
Einsatz Paul:
$$200 - 71 = 129 \text{ Rp.}$$
 (1 P.)

Aufga	be 4 Schnittwinkel		7 P.
a)	Koordinaten der Eckpunkte: A(0/–5), B(6/4) (1 P. mit intersect berechnen oder im table ablesen))	
	Winkel α:		
	$\overline{m_1 = Y_1'(0)} = 2.25 \text{(mit } dx/dy \text{ oder } nDeriv\text{)} $	P.)	
	$m_2 = Y_2'(0) = 0 \text{(mit } dx/dy \text{ oder } nDeriv\text{)} $	P.)	
	$\Rightarrow \alpha = \tan^{-1}(2.25) = 66.037511 \approx 66.04^{\circ}$ (1 P.))	
			5 P.
	Winkel β:		
	$m_1 = Y_1'(6) = 1.125$ (mit dx/dy oder $nDeriv$) (0.5 I	P.)	
	$m_2 = Y_2'(3) = 3 (\text{mit } dx/dy \text{ oder } nDeriv) $ (0.5 I	P.)	
	$\int \varphi_1 = \tan^{-1}(1.125) = 48.366460$		
	$\Rightarrow \begin{cases} \varphi_1 = \tan^{-1}(1.125) = 48.366460\\ \varphi_2 = \tan^{-1}(3) = 71.565051 \end{cases}$		
	$\Rightarrow \beta = \varphi_2 - \varphi_1 = 23.198590 \approx \underline{23.20^{\circ}} $ (1 P.))	
b)	Der Graph von Y ₁ ist ein Halbkreis mit Mittelpunkt O(0/0) (denn		
	$x^2 + Y_1^2 = 5^2$).		
	Der Graph von Y ₂ ist für jeden Wert von a eine Ursprungsgerade, also ein	e	
	Gerade die durch O(0/0) geht.		2 P.
	Der Graph von Y ₂ kann somit für jeden Wert von a als Kreisradius		
	interpretiert werden.		
	Weil die Kreistangente immer senkrecht zum Kreisradius steht (und der Schnittwinkel über Tangenten definiert ist), ist folglich <u>a beliebig</u> .		

Aufg	gabe 5 Wasserbehälter		7 P.
a)		(1 P.)	2.5 P.
	$\begin{split} & \frac{Oberfläche \ F:}{F_{Behälter}} = A_{Boden} + \ 4 \cdot A_{Re \ chteck} \ + \ 2 \cdot A_{Halbkreis} \ + \ 0.5 \cdot A_{Zyl\text{-Mantel}} \\ & = (2 \cdot 3)^2 + 4 \cdot ((2 \cdot 3) \cdot 2) + 2 \cdot (0.5 \cdot \pi \cdot 3^2) + 0.5 \cdot (2\pi \cdot 3 \cdot (2 \cdot 3)) \\ & = \ 36 \ + \ 48 \ + \ 9\pi \ + \ 18\pi \\ & = 168.8230016 \dots \approx \underline{168.82} \end{split}$	(1.5 P.)	
b)	$V_{Quader} = (2x) \cdot (2x) \cdot y = 4x^{2}y$ $V_{Halbzyl.} = \frac{1}{2} \cdot (\pi \cdot x^{2} \cdot (2 \cdot x)) = \pi x^{3}$ $\Rightarrow V_{Behälter} = V_{Quader} + V_{Halbzyl.} = 4x^{2}y + \pi x^{3} = 100$	(1 P.)	
	$\begin{aligned} F_{\text{Behälter}} &= A_{\text{Boden}} + 4 \cdot A_{\text{Re chteck}} + 2 \cdot A_{\text{Halbkreis}} + 0.5 \cdot A_{\text{Zyl-Mantel}} \\ &= (2x)^2 + 4 \cdot ((2x) \cdot y) + 2 \cdot (0.5 \cdot \pi x^2) + 0.5 \cdot (2\pi x \cdot 2x) \\ &= 4x^2 + 8xy + \pi x^2 + 2\pi x^2 \\ &= (4 + 3\pi)x^2 + 8xy \approx 13.424777x^2 + 8xy \end{aligned}$	(1 P.)	
	Hauptbedingung: $F_{Beh\"{a}lter} \rightarrow minimal$ Nebenbedingung: $V_{Beh\"{a}lter} = 100$		4.5 P.
	Nebenbedingung nach y auflösen und in Hauptbedingung einsetzen: NB: $y = \frac{100 - \pi x^3}{4x^2}$	(0.5 P.)	
	HB: $F(x) = (4 + 3\pi)x^2 + 8x \cdot \left(\frac{100 - \pi x^3}{4x^2}\right) \rightarrow \text{minimal}$	(0.5 P.)	
	$\Rightarrow \begin{cases} \underline{\underline{x} = 2.4102848 \approx \underline{2.41}} \\ \underline{\underline{F(x)} = 124.46663 \approx \underline{124.47}} \end{cases} $ (mit minimum)	(1 P.)	
	in NB einsetzen: $\underline{y} = 2.4102848 \approx \underline{2.41}$ (also x = y!)	(0.5 P.)	

Aufgabe 6 Unbekannte Vierecksseite

5 P.



• v berechnen:
$$v = \sqrt{5^2 + 75} = \sqrt{100} = 10$$
 (1 P.)

• Winkel im unteren Dreieck berechnen (mit Trigonometrie und Winkelsumme oder dem Argument "halbes gleichseitiges Dreieck"):

$$\tan^{-1}\left(\frac{5}{\sqrt{75}}\right) = 30^{\circ} \quad (z.B.)$$
 (1 P.)

- Winkel im oberen Dreieck ermitteln (elementargeometrisch) (0.5 P.)
- Im oberen Dreieck Sinussatz anwenden:

$$\frac{u}{\sin 50^{\circ}} = \frac{v}{\sin 110^{\circ}} \implies u = \frac{10 \cdot \sin 50^{\circ}}{\sin 110^{\circ}} = 8.152074... \approx \underline{8.15}$$
 (1.5 P.)

Aufg	abe 7 Streichhölzchen-Bilderrahmen	8 P.
a)	waagrecht: 6 Zeilen · 9 Hölzchen + 4 Zeilen · 4 Hölzchen = 70 Hölzchen senkrecht ebenso. ⇒ <u>h = 140</u>	1 P.
b)	waagrecht: 6 Zeilen \cdot n Hölzchen + (n – 5) Zeilen \cdot 4 Hölzchen = $6n + (n - 5) \cdot 4 = 10n - 20$	
	senkrecht ebenso.	
	\Rightarrow h = 2 · (10n - 20) = 20 · (n - 2) = 20n - 40	2 P.
	\Rightarrow mit n = 900 folgt $\underline{h} = 17^{\circ}960$	
	<u>Variante:</u> Direkt rechnen 6 · 900 + 895 · 4 = 8980 ⇒ $8980 \cdot 2 = \underline{17'960}$	
c)	$h = 20n - 40 = 900$ $\Rightarrow n = \frac{900 + 40}{20} = \frac{47}{20}$	2 P.
d)	Format Anzahl 1 x 1 56 2 x 2 28 3 x 3 0 4 x 4 0 5 x 5 1 6 x 6 4 7 x 7 9 8 x 8 4 9 x 9 1 \Rightarrow Total 103	3 P.